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ABSTRACT
Graph contrastive learning (GCL) has emerged as a dominant tech-
nique for graph representation learning which maximizes the mu-
tual information between paired graph augmentations that share
the same semantics. Unfortunately, it is difficult to preserve se-
mantics well during augmentations in view of the diverse nature
of graph data. Currently, data augmentations in GCL that are de-
signed to preserve semantics broadly fall into three unsatisfactory
ways. First, the augmentations can be manually picked per dataset
by trial-and-errors. Second, the augmentations can be selected via
cumbersome search. Third, the augmentations can be obtained by
introducing expensive domain-specific knowledge as guidance. All
of these limit the efficiency and more general applicability of exist-
ing GCL methods. To circumvent these crucial issues, we propose a
Simple framework for GRAph Contrastive lEarning, SimGRACE
for brevity, which does not require data augmentations. Specifically,
we take original graph as input and GNN model with its perturbed
version as two encoders to obtain two correlated views for con-
trast. SimGRACE is inspired by the observation that graph data
can preserve their semantics well during encoder perturbations
while not requiring manual trial-and-errors, cumbersome search
or expensive domain knowledge for augmentations selection. Also,
we explain why SimGRACE can succeed. Furthermore, we devise
adversarial training scheme, dubbed AT-SimGRACE, to enhance
the robustness of graph contrastive learning and theoretically ex-
plain the reasons. Albeit simple, we show that SimGRACE can yield
competitive or better performance compared with state-of-the-art
methods in terms of generalizability, transferability and robustness,
while enjoying unprecedented degree of flexibility and efficiency.
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1 INTRODUCTION
Graph Neural Networks (GNNs), inheriting the power of neural
networks and utilizing the structural information of graph data
simultaneously, have achieved overwhelming accomplishments in
various graph-based tasks, such as node, graph classification or
graph generation [10, 13, 22, 50]. However, most existing GNNs
are trained in a supervised manner and it is often resource- and
time-intensive to collect abundant labeled data [47]. To remedy
this issue, tremendous endeavors have been devoted to graph self-
supervised learning that learns representations from unlabeled
graphs. Among many, graph contrastive learning (GCL) [53–55]
follows the general framework of contrastive learning in computer
vision domain [42, 46], in which two augmentations are gener-
ated for each graph and then maximizes the mutual information
between these two augmented views. In this way, the model can
learn representations that are invariant to perturbations. For ex-
ample, GraphCL [54] first designs four types of general augmen-
tations (node dropping, edge perturbation, attribute masking and
subgraph) for GCL. However, these augmentations are not suitable
for all scenarios because the structural information and seman-
tics of the graphs varies significantly across domains. For example,
GraphCL [54] finds that edge perturbation benefits social networks
but hurt some biochemical molecules in GCL. Worse still, these aug-
mentations may alter the graph semantics completely even if the
perturbation is weak. For example, dropping a carbon atom in the
phenyl ring will alter the aromatic system and result in an alkene
chain, which will drastically change the molecular properties [40].

To remedy these issues, several strategies have been proposed
recently. Typically, GraphCL [54] manually picks data augmenta-
tions per dataset by tedious trial-and-errors, which significantly
limits the generality and practicality of their proposed framework.
To get rid of the tedious dataset-specific manual tuning of GraphCL,
JOAO [53] proposes to automate GraphCL in selecting augmen-
tation pairs. However, it suffers more computational overhead to

ar
X

iv
:2

20
2.

03
10

4v
2 

 [
cs

.L
G

] 
 1

1 
Fe

b 
20

22

https://doi.org/10.1145/3485447.3512156
https://doi.org/10.1145/3485447.3512156


WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Jun Xia, et al.

Table 1: Comparison between state-of-the-art GCL methods (graph-level representation learning) and SimGRACE.

No manual trial-and-errors No domain knowledge Preserving semantics No cumbersome search Generality

GraphCL [54] % ! % ! %

MoCL [40] ! % ! ! %

JOAO(v2) [53] ! ! % % !

SimGRACE ! ! ! ! !

GraphCL MoCL SimGRACE

Figure 1: Comparison of GraphCL [54], MoCL [40] and Sim-
GRACE on MUTAG dataset. The samples of two classes are
distinguished by colors (blue & orange). We first train three
GNN encoders with these methods respectively and visu-
alise the representations of original graphs with t-SNE in
the upper row. Then, we perturb graphs or encoders in their
respective ways (edge perturbation for GraphCL, replacing
functional group with bioisosteres of similar properties for
MoCL, encoder perturbation for SimGRACE) and visualise
the representations of perturbed (GraphCL, MoCL) or origi-
nal (SimGRACE) graphs in the below row. Unlike GraphCL,
SimGRACE andMoCL can preserve the class identity seman-
tics well after perturbations. However, MoCL requires ex-
pensive domain knowledge as guidance.

search suitable augmentations and still relies on human prior knowl-
edge in constructing and configuring the augmentation pool to
select from. To avoid altering the semantics in the general augmen-
tations adopted in GraphCL and JOAO(v2), MoCL [40] proposes to
replace valid substructures in molecular graph with bioisosteres
that share similar properties. However, it requires expensive domain
knowledge as guidance and can not be applied in other domains like
social graphs. Hence, a natural question emerges: Can we emanci-
pate graph contrastive learning from tedious manual trial-and-errors,
cumbersome search or expensive domain knowledge ?
To answer this question, instead of devising more advanced data
augmentations strategies for GCL, we attempt to break through
state-of-the-arts GCL framework which takes semantic-preserved
data augmentations as prerequisite. More specifically, we take orig-
inal graph data as input and GNN model with its perturbed version
as two encoders to obtain two correlated views. And then, we
maximize the agreement of these two views. With the encoder
perturbation as noise, we can obtain two different embeddings for
same input as “positive pairs”. Similar to previous works [42, 54],

we take other graph data in the same mini-batch as “negative pairs”.
The idea of encoder perturbation is inspired by the observations
in Figure 1. The augmentation or perturbation of MoCL and our
SimGRACE can preserve the class identity semantics well while
GraphCL can not. Also, we explain why SimGRACE can succeed.
Besides, GraphCL [54] shows that GNNs can gain robustness using
their proposed framework. However, (1) they do not explain why
GraphCL can enhance the robustness; (2) GraphCL seems to be
immunized to random attacks well while performing unsatisfactory
against adversarial attacks. GROC [19] first integrates adversarial
transformations into the graph contrastive learning framework and
improves the robustness against adversarial attacks. Unfortunately,
as the authors pointed out, the robustness of GROC comes at a
price of much longer training time because conducting adversar-
ial transformations for each graph is time-consuming. To remedy
these deficiencies, we propose a novel algorithm AT-SimGRACE to
perturb the encoder in an adversarial way, which introduces less
computational overhead while showing better robustness. Theoret-
ically, we explain why AT-SimGRACE can enhance the robustness.
We highlight our contributions as follows:
• Significance:We emancipate graph contrastive learning from
tedious manual trial-and-errors, cumbersome search or ex-
pensive domain knowledge which limit the efficiency and
more general applicability of existing GCL methods. The
comparison between SimGRACE and state-of-the-art GCL
methods can be seen in Table 1.
• Framework: We develop a novel and effective framework,
SimGRACE, for graph contrastive learning which enjoys
unprecedented degree of flexibility, high efficiency and ease
of use. Moreover, we explain why SimGRACE can succeed.
• Algorithm: We propose a novel algorithm AT-SimGRACE to
enhance the robustness of graph contrastive learning. AT-
SimGRACE can achieve better robustness while introducing
minor computational overhead.
• Experiments: We experimentally show that the proposed
methods can yield competitive or better performance com-
pared with state-of-the-art methods in terms of generaliz-
ability, transferability, robustness and efficiency on multiple
social and biochemical graph datasets. The code is available
at: https://github.com/junxia97/SimGRACE.

2 RELATED WORK
2.1 Generative / Predictive self-supervised

learning on graphs
Inspired by the success of self-supervised learning in computer
vision [20, 42] and natural language processing [8, 23], tremendous

https://github.com/junxia97/SimGRACE
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Figure 2: Illustration of SimGRACE, a simple framework of graph contrastive learning. Instead of augmenting the graph data,
we feed the original graph G into a GNN encoder 𝑓 (·;𝜽 ) and its perturbed version 𝑓 (·;𝜽 ′). After passing a shared projection
head 𝑔(·), we maximize the agreement between representations 𝒛𝑖 and 𝒛 𝑗 via a contrastive loss.

endeavors have been devoted to graph self-supervised learning that
learns representations in an unsupervised manner with designed
pretext tasks. Initially, Hu et al. [16] propose two pretext tasks, i.e,
predicting neighborhood context and node attributes to conduct
node-level pre-training. Besides, they utilize supervised graph-level
property prediction and structure similarity prediction as pretext
tasks to perform graph-level pre-training. GPT-GNN [17] designs
generative task in which node attributes and edges are alternatively
generated such that the likelihood of a graph is maximized. Re-
cently, GROVER [34] incorporates GNN into a transformer-style
architecture and learns node embedding by predicting contextual
property and graph-level motifs. Different from above methods, our
SimGRACE follows a contrastive framework that will be introduced
in details below.

2.2 Graph Contrastive Learning
Graph contrastive learning can be categorized into two groups. One
group can encode useful information by contrasting local and global
representations. Initially, DGI [45] and InfoGraph [38] are proposed
to obtain expressive representations for graphs or nodes via max-
imizing the mutual information between graph-level representa-
tions and substructure-level representations of different granularity.
More recently, MVGRL [14] proposes to learn both node-level and
graph-level representation by performing node diffusion and con-
trasting node representation to augmented graph representations.
Another group is designed to learn representations that are tolerant
to data transformation. Specifically, they first augment graph data
and feed the augmented graphs into a shared encoder and projection
head, after which their mutual information is maximized. Typically,
for node-level tasks [56, 57], GCA [58] argues that data augmen-
tation schemes should preserve intrinsic structures and attributes
of graphs and thus proposes to adopt adaptive augmentations that
only perturb unimportant components. DGCL [48] introduces a
novel probabilistic method to alleviate the issue of false negatives
in GCL. For graph-level tasks, GraphCL [54] proposes four types
of augmentations for general graphs and demonstrated that the
learned representations can help downstream tasks. However, the
success of GraphCL comes at the price of tedious manual trial-and-
errors. To tackle this issue, JOAO [53] proposes a unified bi-level

optimization framework to automatically select data augmentations
for GraphCL, which is time-consuming and inconvenient. More re-
cently, MoCL [40] proposes to incorporate domain knowledge into
molecular graph augmentations in order to preserve the semantics.
However, the domain knowledge is extremely expensive. Worse
still, MoCL can only work on molecular graph data, which signif-
icantly limits their generality. Despite the fruitful progress, they
still require tedious manual trial-and-errors, cumbersome search or
expensive domain knowledge for augmentation selection. Instead,
our SimGRACE breaks through state-of-the-arts GCL framework
that takes semantic-preserved data augmentations as prerequisite.

3 METHOD
3.1 SimGRACE
In this section, we will introduce SimGRACE framework in details.
As sketched in Figure 2, the framework consists of the following
three major components:

(1) Encoder perturbation. A GNN encoder 𝑓 (·;𝜽 ) and its its
perturbed version 𝑓 (·;𝜽 ′) first extract two graph-level represen-
tations h and h′ for the same graph G, which can be formulated
as,

h = 𝑓 (G;𝜽 ), h′ = 𝑓 (G;𝜽 ′) . (1)

The method we proposed to perturb the encoder 𝑓 (·;𝜽 ) can be
mathematically described as,

𝜽 ′
𝑙
= 𝜽 𝑙 + [ · 𝚫𝜽 𝑙 ; 𝚫𝜽 𝑙 ∼ N

(
0, 𝜎2

𝑙

)
, (2)

where 𝜽 𝑙 and 𝜽 ′𝑙 are the weight tensors of the 𝑙-th layer of the GNN
encoder and its perturbed version respectively. [ is the coefficient
that scales the magnitude of the perturbation. 𝚫𝜽 𝑙 is the pertur-
bation term which samples from Gaussian distribution with zero
mean and variance 𝜎2

𝑙
. Also, we show that the performance will

deteriorate when we set [ = 0 in section 4.6.1. Note that BGRL [41]
and MERIT [18] also update a target network with an online en-
coder during training. However, SimGRACE differs from them in
three aspects: (1) SimGRACE perturbs the encoder with a random
Guassian noise instead of momentum updating; (2) SimGRACE does
not require data augmentation while BGRL and MERIT take it as
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prerequisite. (3) SimGRACE focuses on graph-level representation
learning while BGRL and MERIT only work in node-level tasks.

(2) Projection head. As advocated in [42], a non-linear trans-
formation 𝑔(·) named projection head maps the representations
to another latent space can enhance the performance. In our Sim-
GRACE framework, we also adopt a two-layer perceptron (MLP) to
obtain 𝑧 and 𝑧′,

𝑧 = 𝑔(h), 𝑧′ = 𝑔(h′). (3)
(3) Contrastive loss. In SimGRACE framework, we utilize the

normalized temperature-scaled cross entropy loss (NT-Xent) as
previous works [30, 37, 46, 54] to enforce the agreement between
positive pairs 𝑧 and 𝑧′ compared with negative pairs.

During SimGRACE training, a minibatch of 𝑁 graphs are ran-
domly sampled and then they are fed into a GNN encoder 𝑓 (·;𝜽 )
and its perturbed version 𝑓 (·;𝜽 ′), resulting in two presentations
for each graph and thus 2𝑁 representations in total. We re-denote
𝑧, 𝑧′ as 𝒛𝑛, 𝒛′𝑛 for 𝑛-th graph in the minibatch. Negative pairs are
generated from the other 𝑁 − 1 perturbed representations within
the same mini-batch as in [5, 42, 54]. Denoting the cosine similarity
function as sim (𝒛, 𝒛′) = 𝒛⊤𝒛′/∥𝒛∥ ∥𝒛′∥, the contrastive loss for the
𝑛-th graph is defined as,

ℓ𝑛 = − log
exp

(
sim

(
𝒛𝑛, 𝒛′𝑛

)
)/𝜏

)∑𝑁
𝑛′=1,𝑛′≠𝑛 exp (sim (𝒛𝑛, 𝒛𝑛′) /𝜏)

, (4)

where 𝜏 is the temperature parameter. The final loss is computed
across all positive pairs in the minibatch.

3.2 Why can SimGRACE work well?
In order to understand why SimGRACE can work well, we first
introduce the analysis tools from [43]. Specifically, they identify
two key properties related to contrastive learning: alignment and
uniformity and then propose two metrics to measure the quality of
representations obtained via contrastive learning. One is the align-
ment metric which is straightforwardly defined with the expected
distance between positive pairs:

ℓalign (𝑓 ;𝛼) ≜ E
(𝑥,𝑦)∼𝑝pos

[
∥ 𝑓 (𝑥) − 𝑓 (𝑦)∥𝛼2

]
, 𝛼 > 0 (5)

where 𝑝pos is the distribution of positive pairs (augmentations of
the same sample). This metric is well aligned with the objective
of contrastive learning: positive samples should stay close in the
embedding space. Analogously, for our SimGRACE framework, we
provide a modified metric for alignment,

ℓalign (𝑓 ;𝛼) ≜ E
𝑥∼𝑝data

[
∥ 𝑓 (𝑥 ;𝜽 ) − 𝑓 (𝑥 ;𝜽 ′)∥𝛼2

]
, 𝛼 > 0 (6)

where 𝑝data is the data distribution.We set 𝛼 = 2 in our experiments.
The other is the uniformity metric which is defined as the logarithm
of the average pairwise Gaussian potential:

ℓuniform (𝑓 ;𝛼) ≜ log E
𝑥,𝑦

𝑖 .𝑖 .𝑑 .∼ 𝑝data

[
𝑒−𝑡 ∥𝑓 (𝑥 ;𝜽 )−𝑓 (𝑦;𝜽 ) ∥

2
2
]
. 𝑡 > 0

(7)
In our experiments, we set 𝑡 = 2. The uniformity metric is also
aligned with the objective of contrastive learning that the embed-
dings of random samples should scatter on the hypersphere. We
take the checkpoints of SimGRACE, GraphCL and MoCL every
2 epochs during training and visualize the alignment ℓ𝑎𝑙𝑖𝑔𝑛 and

Figure 3: ℓ𝑎𝑙𝑖𝑔𝑛-ℓ𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚 plot for SimGRACE, GraphCL and
MoCL on MUTAG dataset. The numbers around the points
are the indexes of epochs. For both ℓ𝑎𝑙𝑖𝑔𝑛 and ℓ𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚 , lower
is better.

uniformity ℓ𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚 metrics in Figure 3. As can be observed, all the
three methods can improve the alignment and uniformity. How-
ever, GraphCL achieves a smaller gain on the alignment than Sim-
GRACE and MoCL. In other words, the positive pairs can not stay
close in GraphCL because general graph data augmentations (drop
edges, drop nodes and etc.) destroy the semantics of original graph
data, which degrades the quality of the representations learned
by GraphCL. Instead, MoCL augments graph data with domain
knowledge as guidance and thus can preserve semantics during
augmentation. Eventually, MoCL dramatically improves the align-
ment. Compared with GraphCL, SimGRACE can achieve better
alignment while improving uniformity because encoder perturba-
tion can preserve data semantics well. On the other hand, although
MoCL achieves better alignment than SimGRACE via introducing
domain knowledge as guidance, it only achieves a small gain on
the uniformity, and eventually underperforms SimGRACE.

3.3 AT-SimGRACE
Recently, GraphCL [54] shows that GNNs can gain robustness us-
ing their proposed framework. However, they did not explain why
GraphCL can enhance the robustness. Additionally, GraphCL seems
to be immunized to random attacks well while being unsatisfactory
against adversarial attacks. In this section, we aim to utilize Adver-
sarial Training (AT) [11, 24] to improve the adversarial robustness
of SimGRACE in a principled way. Generally, AT directly incorpo-
rates adversarial examples into the training process to solve the
following optimization problem:

min
𝜽
L′(𝜽 ), where L′(𝜽 ) = 1

𝑛

𝑛∑︁
𝑖=1

max
∥x′𝑖−x𝑖 ∥𝑝 ≤𝜖

ℓ ′𝑖
(
𝑓
(
x′𝑖 ;𝜽

)
, 𝑦𝑖

)
,

(8)
where 𝑛 is the number of training examples, x′

𝑖
is the adversarial

example within the 𝜖-ball (bounded by an 𝐿𝑝 -norm) centered at
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natural example x𝑖 , 𝑓 is the DNN with weight 𝜽 , ℓ ′(·) is the stan-
dard supervised classification loss (e.g., the cross-entropy loss),
and L′(𝜽 ) is called the "adversarial loss". However, above general
framework of AT can not directly be applied in graph contrastive
learning because (1) AT requires labels as supervision while labels
are not available in graph contrastive learning; (2) Perturbing each
graph for the dataset in an adversarial way will introduce heavy
computational overhead, which has been pointed out in GROC [19].
To remedy the first issue, we substitute supervised classification
loss in Eq. (8) with contrastive loss in Eq. (4). To tackle the second
issue, instead of conducting adversarial transformation of graph
data, we perturb the encoder in an adversarial way, which is more
computationally efficient.
Assuming that 𝚯 is the weight space of GNNs, for any w and any
positive 𝜖 , we can define the norm ball in 𝜽 with radius 𝜖 centered
at w as,

R(w; 𝜖) := {𝜽 ∈ 𝚯 : ∥𝜽 −w∥ ≤ 𝜖}, (9)

we choose 𝐿2 norm to define the norm ball in our experiments.
With this definition, we can now formulate our AT-SimGRACE as
an optimization problem,

min
𝜽

L(𝜽 + 𝚫),

where L(𝜽 + 𝚫) = 1
𝑀

𝑀∑︁
𝑖=1

max
𝚫∈R(0;𝜖)

ℓ𝑖 (𝑓 (G𝑖 ;𝜽 + 𝚫) , 𝑓 (G𝑖 ;𝜽 )) ,

(10)
where𝑀 is the number of graphs in the dataset. We propose Algo-
rithm 1 to solve this optimization problem. Specifically, for inner
maximization, we forward 𝐼 steps to update 𝚫 in the direction of in-
creasing the contrastive loss using gradient ascent algorithm. With
the output perturbation 𝚫 of inner maximization, the outer loops
update the weights 𝜽 of GNNs with mini-batched SGD.

Algorithm 1: Encoder perturbation of AT-SimGRACE
Data: Graph dataset D = {G1,G2, ...,G𝑀 }, contrastive loss

ℓ , batch size 𝑁 , initial encoder weights 𝜽 , inner
iterations 𝐼 , inner learning rate Z , outer learning rate
𝛾 , norm ball radius 𝜖 .

1 for each mini-batch do
2 Sample D𝐵 = {G𝑖 }𝑁𝑖=1 from D;
3 Initialize perturbation: 𝚫← 0;
4 for 𝑡 = 0, 1, 2, ..., 𝐼 − 1 do
5 Update perturbation:

𝚫← 𝚫 + Z ∑𝑁
𝑖=1 ∇𝜽 ℓ𝑖 (𝑓 (G𝑖 ;𝜽 + 𝚫) , 𝑓 (G𝑖 ;𝜽 )) /𝑁 ;

6 if ∥𝚫∥2 > 𝜖 then
7 Normalize perturbation: 𝚫← 𝜖𝚫/∥𝚫∥2;
8 end
9 end

10 Update weights:
𝜽 ′ ← 𝜽 − 𝛾 ∑𝑁

𝑖=1 ∇𝜽 ℓ𝑖 (𝑓 (G𝑖 ;𝜽 + 𝚫) , 𝑓 (G𝑖 ;𝜽 )) /𝑁 .
11 end

3.4 Theoretical Justification
In this section, we aim to explain the reasons why AT-SimGRACE
can enhance the robustness of graph contrastive learning. To start,
it is widely accepted that flatter loss landscape can bring robust-
ness [3, 31, 44]. For example, as formulated in Eq. 8, adversarial
training (AT) enhances robustness via restricting the change of loss
when the input of models is perturbed indeed. Thus, we want to
theoretically justify why AT-SimGRACE works via validating that
AT-SimGRACE can flatten the loss landscape. Inspired by previous
work [29] that connects sharpness of loss landscape and PAC-Bayes
theory [25, 26], we utilize PAC-Bayes framework to derive guar-
antees on the expected error. Assuming that the prior distribution
𝑃 over the weights is a zero mean, 𝜎2 variance Gaussian distribu-
tion, with probability at least 1 − 𝛿 over the draw of𝑀 graphs, the
expected error of the encoder can be bounded as:

E{G𝑖 }𝑀𝑖=1,𝚫
[L(𝜽+𝚫)] ≤ E

𝚫
[L(𝜽+𝚫)]+4

√︄
𝐾𝐿(𝜽 + 𝚫∥𝑃) + ln 2𝑀

𝛿

𝑀
.

(11)
We choose 𝚫 as a zero mean spherical Gaussian perturbation with
variance 𝜎2 in every direction, and set the variance of the perturba-
tion to the weight with respect to its magnitude 𝜎 = 𝛼 ∥𝜽 ∥. Besides,
we substitute E

𝚫
[L(𝜽 + 𝚫)] with L(𝜽 ) + E

𝚫
[L(𝜽 + 𝚫)] − L(𝜽 ).

Then, we can rewrite Eq. 11 as:

E{G𝑖 }𝑀𝑖=1,𝚫
[L(𝜽 + 𝚫)] ≤ L(𝜽 ) + {E

𝚫
[L(𝜽 + 𝚫)] − L(𝜽 )}︸                           ︷︷                           ︸
Expected sharpness

+ 4

√︄
1
𝑀

(
1
2𝛼 + ln

2𝑀
𝛿

)
.

(12)

It is obvious that E
𝚫
[L(𝜽 + 𝚫)] ≤ max

𝚫
[L(𝜽 + 𝚫)] and the third

term 4
√︂

1
𝑀

(
1
2𝛼 + ln

2𝑀
𝛿

)
is a constant. Thus, AT-SimGRACE opti-

mizes the worst-case of sharpness of loss landscape max
𝚫
[L(𝜽 +

𝚫)] −L(𝜽 ) to the bound of the expected error, which explains why
AT-SimGRACE can enhance the robustness.

4 EXPERIMENTS
In this section, we conduct experiments to evaluate SimGRACE and
AT-SimGRACE through answering the following research questions.

• RQ1. (Generalizability)Does SimGRACE outperform com-
petitors in unsupervised and semi-supervised settings?
• RQ2. (Transferability) Can GNNs pre-trained with Sim-
GRACE show better transferability than competitors?
• RQ3. (Robustness)CanAT-SimGRACE perform better than
existing competitors against various adversarial attacks?
• RQ4. (Efficiency) How about the efficiency (time and mem-
ory) of SimGRACE? Does it more efficient than competitors?
• RQ5. (Hyperparameters Sensitivity) Is the proposed Sim-
GRACE sensitive to hyperparameters like the magnitude of
the perturbation [, training epochs and batch size?
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Table 2: Comparing classification accuracy with baselines under the same experiment setting. The top three accuracy or rank
for each dataset are emphasized in bold. A.R. denotes average rank. - indicates that results are not available in published
papers.

Methods NCI1 PROTEINS DD MUTAG COLLAB RDT-B RDT-M5K IMDB-B A.R. ↓
GL − − − 81.66 ± 2.11 − 77.34 ± 0.18 41.01 ± 0.17 65.87 ± 0.98 8.3
WL 80.01 ± 0.50 72.92 ± 0.56 − 80.72 ± 3.00 − 68.82 ± 0.41 46.06 ± 0.21 72.30 ± 3.44 6.2
DGK 80.31 ± 0.46 73.30 ± 0.82 − 87.44 ± 2.72 − 78.04 ± 0.39 41.27 ± 0.18 66.96 ± 0.56 5.5

node2vec 54.89 ± 1.61 57.49 ± 3.57 − 72.63 ± 10.20 − − − − 9.0
sub2vec 52.84 ± 1.47 53.03 ± 5.55 − 61.05 ± 15.80 − 71.48 ± 0.41 36.68 ± 0.42 55.26 ± 1.54 10.2
graph2vec 73.22 ± 1.81 73.30 ± 2.05 − 83.15 ± 9.25 − 75.78 ± 1.03 47.86 ± 0.26 71.10 ± 0.54 6.7
MVGRL − − − 75.40 ± 7.80 − 82.00 ± 1.10 − 63.60 ± 4.20 8.3
InfoGraph 76.20 ± 1.06 74.44 ± 0.31 72.85 ± 1.78 89.01 ± 1.13 70.65 ± 1.13 82.50 ± 1.42 53.46 ± 1.03 73.03 ± 0.87 3.8
GraphCL 77.87 ± 0.41 74.39 ± 0.45 78.62 ± 0.40 86.80 ± 1.34 71.36 ± 1.15 89.53 ± 0.84 55.99 ± 0.28 71.14 ± 0.44 3.1
JOAO 78.07 ± 0.47 74.55 ± 0.41 77.32 ± 0.54 87.35 ± 1.02 69.50 ± 0.36 85.29 ± 1.35 55.74 ± 0.63 70.21 ± 3.08 4.3
JOAOv2 78.36 ± 0.53 74.07 ± 1.10 77.40 ± 1.15 87.67 ± 0.79 69.33 ± 0.34 86.42 ± 1.45 56.03 ± 0.27 70.83 ± 0.25 3.6

SimGRACE 79.12 ± 0.44 75.35 ± 0.09 77.44 ± 1.11 89.01 ± 1.31 71.72 ± 0.82 89.51 ± 0.89 55.91 ± 0.34 71.30 ± 0.77 2.0

4.1 Experimental Setup
4.1.1 Datasets. For unsupervised and semi-supervised learning,
we use datasets from the benchmark TUDataset [27], including
graph data for various social networks [2, 52] and biochemical
molecules [9, 32]. For transfer learning, we perform pre-training
on ZINC-2M and PPI-306K and finetune the model with various
datasets including PPI, BBBP, ToxCast and SIDER.

4.1.2 Evaluation Protocols. Following previous works for graph-
level self-supervised representation learning [39, 53, 54], we evalu-
ate the generalizability of the learned representations on both unsu-
pervised and semi-supervised settings. In unsupervised setting, we
train SimGRACE using the whole dataset to learn graph representa-
tions and feed them into a downstream SVM classifier with 10-fold
cross-validation. For semi-supervised setting, we pre-train GNNs
with SimGRACE on all the data and did finetuning & evaluation
with 𝐾 (𝐾 = 1

label rate ) folds for datasets without the explicit train-
ing/validation/test split. For datasets with the train/validation/test
split, we pre-train GNNs with the training data, finetuning on the
partial training data and evaluation on the validation/test sets. More
details can be seen in the appendix.

4.1.3 Compared baselines. We compare SimGRACE with state-
of-the-arts graph kernel methods including GL [36], WL [35] and
DGK [52]. Also, we compare SimGRACE with other graph self-
supervised learning methods: GAE [21], node2vec [12], sub2vec [1],
graph2vec [28], EdgePred [16], AttrMasking [16], ContextPred [16],
Infomax (DGI) [45], InfoGraph [39] and instance-instance con-
trastive methods GraphCL [54], JOAO(v2) [53].

4.2 Unsupervised and semi-supervised
learning (RQ1)

For unsupervised representation learning, as can be observed in
Table 2, SimGRACE outperforms other baselines and always ranks
top three on all the datasets. Generally, SimGRACE performs better
on biochemical molecules compared with data augmentation based
methods. The reason is that the semantics of molecular graphs are

Table 3: Transfer learning comparison with other pre-
training schemes. The top-3 accuracy for each dataset are
emphasized in bold.

Pre-Train dataset PPI-306K ZINC 2M
Fine-Tune dataset PPI BBBP ToxCast SIDER
No Pre-Train 64.8 ± 1.0 65.8 ± 4.5 63.4 ± 0.6 57.3 ± 1.6
EdgePred 65.7 ± 1.3 68.8 ± 0.8 62.7 ± 0.4 58.4 ± 0.8

AttrMasking 65.2 ± 1.6 67.3 ± 2.4 64.1 ± 0.6 60.4 ± 0.7
ContextPred 64.4 ± 1.3 64.3 ± 2.8 64.2 ± 0.5 61.0± 0.7
GraphCL 67.88 ± 0.85 68.0 ± 2.0 63.9 ± 0.6 60.9 ± 0.6
JOAO 64.43 ± 1.38 69.68 ± 0.67 62.40 ± 0.57 60.53 ± 0.88
JOAOv2 63.94 ± 1.59 70.22± 0.98 62.94 ± 0.48 59.97 ± 0.79

SimGRACE 70.25 ± 1.22 71.25 ± 0.86 63.36 ± 0.52 60.59 ± 0.96

more fragile compared with social networks. General augmenta-
tions (drop nodes, drop edges and etc.) adopted in other baselines
will not alter the semantics of social networks dramatically. For
semi-supervised task, as can be observed in Table 4, we report two
semi-supervised tasks with 1 % and 10% label rate respectively. In
1% setting, SimGRACE outperforms previous baselines by a large
margin or matching the performance of SOTA methods. For 10 %
setting, SimGRACE performs comparably to SOTA methods includ-
ing GraphCL and JOAO(v2) whose augmentations are derived via
expensive trial-and-errors or cumbersome search.

4.3 Transferability (RQ2)
To evaluate the transferability of the pre-training scheme, we con-
duct experiments on transfer learning onmolecular property predic-
tion in chemistry and protein function prediction in biology follow-
ing previous works [16, 49, 54]. Specifically, we pre-train and fine-
tune the models with different datasets. For pre-training, learning
rate is tuned in {0.01, 0.1, 1.0} and epoch number in {20, 40, 60, 80, 100}
where grid serach is performed. As sketched in Table 3, there is no
universally beneficial pre-training scheme especially for the out-
of-distribution scenario in transfer learning. However, SimGRACE
shows competitive or better transferability than other pre-training
schemes, especially on PPI dataset.



SimGRACE: A Simple Framework for Graph Contrastive Learning without Data Augmentation WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Table 4: Comparing classification accuracy with baselines under the same semi-supervised setting. The top three accuracy or
rank are emphasized in bold. − indicates that label rate is too low for a given dataset size. L.R. and A.R. are short for label rate
and average rank, respectively.

L.R. Methods NCI1 PROTEINS DD COLLAB RDT-B RDT-M5K A.R. ↓
No pre-train. 60.72 ± 0.45 − − 57.46 ± 0.25 − − 8.5
Augmentations 60.49 ± 0.46 − − 58.40 ± 0.97 − − 8.0

GAE 61.63 ± 0.84 − − 63.20 ± 0.67 − − 5.5
Infomax 62.72 ± 0.65 − − 61.70 ± 0.77 − − 4.0

1% ContextPred 61.21 ± 0.77 − − 57.60 ± 2.07 − − 7.5
GraphCL 62.55 ± 0.86 − − 64.57 ± 1.15 − − 2.0
JOAO 61.97 ± 0.72 − − 63.71 ± 0.84 − − 4.5
JOAOv2 62.52 ± 1.16 − − 64.51 ± 2.21 − − 3.0

SimGRACE 64.21 ± 0.65 − − 64.28 ± 0.98 − − 2.0
No pre-train. 73.72 ± 0.24 70.40 ± 1.54 73.56 ± 0.41 73.71 ± 0.27 86.63 ± 0.27 51.33 ± 0.44 7.7
Augmentations 73.59 ± 0.32 70.29 ± 0.64 74.30 ± 0.81 74.19 ± 0.13 87.74 ± 0.39 52.01 ± 0.20 7.0

GAE 74.36 ± 0.24 70.51 ± 0.17 74.54 ± 0.68 75.09 ± 0.19 87.69 ± 0.40 33.58 ± 0.13 6.3
Infomax 74.86± 0.26 72.27 ± 0.40 75.78 ± 0.34 73.76 ± 0.29 88.66 ± 0.95 53.61 ± 0.31 3.7

10% ContextPred 73.00 ± 0.30 70.23 ± 0.63 74.66 ± 0.51 73.69 ± 0.37 84.76 ± 0.52 51.23 ± 0.84 8.3
GraphCL 74.63± 0.25 74.17± 0.34 76.17± 1.37 74.23 ± 0.21 89.11± 0.19 52.55 ± 0.45 2.8
JOAO 74.48 ± 0.27 72.13 ± 0.92 75.69 ± 0.67 75.30 ± 0.32 88.14 ± 0.25 52.83± 0.54 4.2
JOAOv2 74.86± 0.39 73.31± 0.48 75.81± 0.73 75.53± 0.18 88.79± 0.65 52.71 ± 0.28 2.5

SimGRACE 74.60 ± 0.41 74.03 ± 0.51 76.48 ± 0.52 74.74 ± 0.28 88.86 ± 0.62 53.97 ± 0.64 2.3

Table 5: Performance under three adversarial attacks for GNN with different depth following the protocols in [7].

Methods Two-Layer Three-Layer Four-Layer
No Pre-Train GraphCL AT-SimGRACE No Pre-Train GraphCL AT-SimGRACE No Pre-Train GraphCL AT-SimGRACE

Unattack 93.20 94.73 94.24 98.20 98.33 99.32 98.87 99.00 99.13
RandSampling 78.73 80.68 81.73 92.27 92.60 94.27 95.13 97.40 97.67
GradArgmax 69.47 69.26 75.13 64.60 89.33 93.00 95.80 97.00 96.60

RL-S2V 42.93 42.20 44.86 41.93 61.66 66.00 70.20 84.86 85.29

Table 6: Comparisons of efficiency on three graph datasets.
Note that we do not take the time for manual trial-and-
errors of GraphCL into consideration. In fact, picking the
suitable augmentations manually for GraphCL is much
more time-consuming. All the three methods are evaluated
on a 32GB V100 GPU.

Dataset Algorithm Training Time Memory
GraphCL 111𝑠 1231𝑀𝐵

PROTEINS JOAOv2 4088𝑠 1403𝑀𝐵

SimGRACE 46 s 1175 MB
GraphCL 1033𝑠 10199𝑀𝐵

COLLAB JOAOv2 10742𝑠 7303𝑀𝐵

SimGRACE 378 s 6547 MB
GraphCL 917𝑠 4135𝑀𝐵

RDT-B JOAOv2 10278𝑠 3935𝑀𝐵

SimGRACE 280 s 2729 MB

4.4 Adversarial robustness (RQ3)
Following previous works [7, 54], we perform on synthetic data to
classify the component number in graphs, facing the RandSampling,
GradArgmax and RL-S2V attacks, to evaluate the robustness of
AT-SimGRACE. To keep fair, we adopt Structure2vec [6] as the
GNN encoder as in [7, 54]. Besides, we pretrain the GNN encoder
for 150 epochs because it takes longer time for the convergence
of adversarial training. We set the inner learning rate Z = 0.001
and the radius of perturbation ball 𝜖 = 0.01. As demonstrated in
Table 5, AT-SimGRACE boosts the robustness of GNNs dramatically
compared with training from scratch and GraphCL under three
typical evasion attacks.

4.5 Efficiency (Training time and memory cost)
(RQ4)

In Table 6, we compare the performance of SimGRACE with the
state-of-the-arts methods including GraphCL and JOAOv2 in terms
of their training time and the memory overhead. Here, the training
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Figure 4: Performance versus magnitude of the perturbation ([) in unsupervised representation learning task.

time refers to the time for pre-training stage of the semi-supervised
task and the memory overhead refers to total memory costs of
model parameters and all hidden representations of a batch. As can
be observed, SimGRACE runs near 40-90 times faster than JOAOv2
and 2.5-4 times faster than GraphCL. If we take the time for manual
trial-and-errors in GraphCL into consideration, the superiority of
SimGRACEwill bemore pronounced. Also, SimGRACE requires less
computational memory than GraphCL and JOAOv2. In particular,
the efficiency of SimGRACE can be more prominent on large-scale
social graphs, such as COLLAB and RDT-B.

4.6 Hyper-parameters sensitivity analysis
(RQ5)

4.6.1 Magnitude of the perturbation. As can be observed in Fig-
ure 4, weight perturbation is crucial in SimGRACE. If we set the
magnitude of the perturbation as zero ([ = 0), the performance
is usually the lowest compared with other setting of perturbation
across these four datasets. This observation aligns with our in-
tuition. Without perturbation, SimGRACE simply compares two
original samples as a negative pair while the positive pair loss
becomes zero, leading to homogeneously pushes all graph repre-
sentations away from each other, which is non-intuitive to justify.
Instead, appropriate perturbations enforce the model to learn rep-
resentations invariant to the perturbations through maximizing
the agreement between a graph and its perturbation. Besides, well
aligned with previous works [15, 33] that claim "hard" positive pairs
and negative pairs can boost the performance of contrastive learn-
ing, we can observe that larger magnitude (within an appropriate
range) of the perturbation can bring consistent improvement of
the performance. However, over-large perturbations will lead to
performance degradation because the semantics of graph data are
not preserved.

4.6.2 Batch-size and training epochs. Figure 5 demonstrates the
performance of SimGRACE trained with various batch size and
epochs. Generally, larger batch size or training epochs can bring
better performance. The reason is that larger batch size will provide
more negative samples for contrasting. Similarly, training longer
also provides more new negative samples for each sample because
the split of total datasets is more various with more training epochs.
In our experiments, to keep fair, we follow the same settings of
other competitors [53, 54] via training the GNN encoder with batch
size as 128 and number of epochs as 20. In fact, we can further
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Figure 5: Performance of SimGRACE trained with different
batch size and epochs on NCI1 dataset.

improve the performance of SimGRACE with larger batch size and
longer training time.

5 CONCLUSIONS
In this paper, we propose a simple framework (SimGRACE) for
graph contrastive learning. Although it may appear simple, we
demonstrate that SimGRACE can outperform or match the state-
of-the-art competitors on multiple graph datasets of various scales
and types, while enjoying unprecedented degree of flexibility, high
efficiency and ease of use. We emancipate graph contrastive learn-
ing from tedious manual tuning, cumbersome search or expensive
domain knowledge. Furthermore, we devise adversarial training
schemes to enhance the robustness of SimGRACE in a principled
way and theoretically explain the reasons. There are two promis-
ing avenues for future work: (1) exploring if encoder perturbation
can work well in other domains like computer vision and natural
language processing. (2) applying the pre-trained GNNs to more
real-world tasks including social analysis and biochemistry.
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A APPENDIX: DATASETS IN VARIOUS
SETTINGS

A.1 Unsupervised learning & Semi-supervised
learning

Table 7: Datasets statistics for unsupervised and semi-
supervised experiments.

Datasets Category Graph Num. Avg. Node Avg. Degree
NCI1 Biochemical Molecules 4110 29.87 1.08

PROTEINS Biochemical Molecules 1113 39.06 1.86
DD Biochemical Molecules 1178 284.32 715.66

MUTAG Biochemical Molecules 188 17.93 19.79
COLLAB Social Networks 5000 74.49 32.99
RDT-B Social Networks 2000 429.63 1.15
RDB-M Social Networks 2000 429.63 497.75
IMDB-B Social Networks 1000 19.77 96.53

For unsupervised setting, experiments are performed for 5 times
each of which corresponds to a 10-fold evaluation, with mean and
standard deviation of accuracies (%) reported. For semi-supervised
learning, we perform experiments with 1% (if there are over 10 sam-
ples for each class) and 10% label rate for 5 times, each of which cor-
responds to a 10-fold evaluation, with mean and standard deviation
of accuracies (%) reported. For pre-training, learning rate is tuned in
{0.1, 1.0, 5.0, 10.0} and epoch number in {20, 40, 60, 80, 100} where
grid search is performed. All datasets used in both unsupervised
and semi-supervised experiments can be seen in Table 7.

A.2 Transfer learning

Table 8: Datasets statistics for transfer learning.

Datasets Category Utilization Graph Num. Avg. Node Avg. Degree
ZINC-2M Biochemical Molecules Pre-Training 2,000,000 26.62 57.72
PPI-306K Protein-Protein Intersection Networks Pre-Training 306,925 39.82 729.62
BBBP Biochemical Molecules Finetuning 2,039 24.06 51.90

ToxCast Biochemical Molecules Finetuning 8,576 18.78 38.52
SIDER Biochemical Molecules Finetuning 1,427 33.64 70.71

The datasets utilized in transfer learning can be seen in Table 8.
ZINC-2M and PPI-306K are used for pre-training and the left ones
are for fine-tuning.

B GNN ARCHITECTURES IN VARIOUS
SETTINGS

To keep fair, we adopt the same GNNs architectures with previous
competitors. Specifically, for unsupervised task, GIN [51] with 3
layers and 32 hidden dimensions is adopted as the encoder. For
semi-supervised task, we utilize ResGCN [4] with 5 layers and 128
hidden dimensions. For transfer learning, we adopt GIN with the
default setting in [16] as the GNN-based encoder. For experiments
on adversarial robustness, Structure2vec is adopted as the GNN-
based encoder as in [7].
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